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Abstract
The dynamics of Rayleigh envelope solitons propagating along the surface of a uniform
isotropic elastic half-space coated with a thin layer of a nonlinear anharmonic material are
investigated. A variant of an asymptotic procedure for finding an approximate analytical
solution for such solitons is proposed.

1. Introduction

In recent years investigation of the nonlinear properties of
different physical systems has formed a new branch of modern
physics (theoretical, mathematical and experimental). One
can say that a new ‘nonlinear physics’ now exists. Progress
in this area is substantially due to the formulation of some
new problems. One of them is the theoretical investigation
of a new type of excitation—that of solitons which are
the stable, spatially localized excitations of a nonlinear
medium. In an elastic medium, nonlinear phenomena
(in particular, nonlinear surface waves) have been intensively
investigated both experimentally and theoretically since the
1950s [1]. However, nonstationary nonlinear waves were
mainly considered. It became clear later that the existence
of localized nonlinear stationary waves is determined by
competition between two phenomena: nonlinearity of the
system and dispersion of linear waves. The intrinsic dispersion
of elastic waves which exist due to the discreetness of the
crystal lattice is usually neglected within the framework of the
theory of elasticity because this dispersion is rather small for
an infinite elastic medium [2]. The dispersion of elastic waves
may be more pronounced for surface waves localized near
the surface of a half-space coated with a layer of a different
substance. Here, in addition to the natural spatial scale, which
is the interatomic spacing, an additional spatial parameter
appears—the effective thickness of the covering layer, which
can be much larger than the interatomic spacing. Indeed, it
is in such a geometry that surface solitons with a stationary
Rayleigh-type profile have been observed in experiments on

laser excitation of high-intensity nonlinear surface waves on a
surface coated with a different substance [3–7].

Unfortunately most theoretical results for nonlinear
elastic waves and solitons were obtained using simple one-
dimensional models of an atomic chain [8, 9]. This
approach needs to be modified to describe adequately the
recent experiments on detecting solitons in real 2D and 3D
systems. The problem of nonlinear waves in 2D systems,
such as a half-space covered with a thin film, is much more
complicated [10–16]. In [10–12], using the model of an
elastic half-space with a free boundary, the equations for
longitudinal displacements or longitudinal deformations were
derived. These equations are sufficiently different from each
other, emphasizing the nontriviality and complicated nature of
the problem. Solitons in an elastic half-space covered with a
thin film were studied theoretically for the first time in [13].
The authors restricted themselves to the simplest model for
pure shear waves and took into account the dispersion only for
the half-space (nonlinear substrate–linear film). Later, based
on the same model, numerical solutions of the equations for
Rayleigh solitons were obtained in [14]. In [15], a model
of a nonlinear half-space covered with a nonlinear film was
analyzed within the simple model, which supposes that only
displacements normal to the surface plane are continuous.
The authors proved that surface solitons may exist in such
system. However, such solitons are accompanied by nonzero
total deformation. The problem of Rayleigh solitons with a
stationary profile near the surface of a harmonic elastic half-
space coated with a thin layer of an anharmonic material was
considered in [16].
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On the other hand, the same experiments [4–6] show
that a propagating soliton with a stationary profile moving
with a velocity somewhat higher than the Rayleigh velocity
is accompanied by a spatially localized perturbation moving
with a velocity lower than the Rayleigh velocity. This may be
elastic waves which are nonlinearly coupled into a so-called
‘envelope soliton’. So the question of the possible existence of
Rayleigh envelope solitons in elastic systems with a nonlinear
film coating is under consideration here. Ordinarily, in one-
dimensional systems this question can be easily investigated
using asymptotic methods of one type or another [17]. In multi-
dimensional systems the asymptotic procedure for finding
soliton solutions becomes nontrivial and complicated even in
the leading-order (resonance) approximation. In the present
paper it is shown that Rayleigh envelope solitons can exist
in systems with a nonlinear coating and the properties of the
corresponding solutions are investigated.

2. Formulation of the model and the dynamical
equations

The following simple model is formulated for describing the
dynamics of nonlinear surface waves in an elastic half-space
with a thin nonlinear coating. We shall assume that the
displacements of the atoms do not depend on the coordinate
y in the plane of the surface and that a nonlinear Rayleigh
surface wave propagates along the x axis. Then the problem
becomes effectively two-dimensional. We take account of
the fact that the atoms move only in the sagittal plane xz.
We assume the half-space to be linear and isotropic, and we
include in the interaction energy between the atoms in the
monolayer and in the surface of the half-space (nearest and
next-to-nearest atoms) terms which are quadratic and cubic in
the displacements (we assume the interaction to be central). It
was shown in [16] that in the leading-order approximation the
anharmonic terms need to be included only in the interaction
between the atoms in the surface monolayer. In the long-
wavelength approximation the total energy has the form

Etot = 1

a

∫ +∞

−∞
dx

[
MU 2

t + MV 2
t + α

2
U 2
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24
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]
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where a is the equilibrium distance between the atoms,
Un, Vn are the displacements of the atoms in the directions
x and z in the monolayer, α, β are the linear and nonlinear,
respectively, interaction constants in the monolayer, us, vs are
the displacements of the atoms along the x and z axes on the
substrate surface, λ is the coefficient of the elastic (central)
interaction between the nearest-neighbor atoms of the substrate
and the covering monolayer, and γ is the coefficient of the
elastic interaction of a monolayer atom. We shall consider the
substrate half-space to be an isotropic elastic medium, i.e. we
shall use for it wave equations with the velocities cl and ct

for longitudinal and transverse elastic waves, respectively. We
underscore once again that the intrinsic dispersion is taken

into account only in the surface layer. The derivation of the
effective one-dimensional equations assumed that the effect of
the monolayer is weak and the characteristics of a nonlinear
wave are close to those of a linear Rayleigh wave in a half-
space without a film coating. Specifically, it was assumed
for solitons with a stationary profile and space x and time t
dependences for all displacements of the form (x − ct) that
the velocity c of the center of the soliton differs negligibly
from the Rayleigh velocity cR. In the presence of an additional
time dependence characteristic for envelope solitons, the group
velocity should be very close to the Rayleigh velocity. These
conditions mean that the amplitude of the surface wave is
small, which agrees with real experiments. This engenders
the small parameter ξ = (c − cR)/cR � 1, which can be
used to formulate an approximate theory and derive in the
leading-order approximation a nonlinear evolutionary equation
for surface solitons. In the long-wavelength approximation
the two-dimensional linear problem in the linear elastic half-
space reduces to solving the Laplace equation, for which a
relation between the different components of the deformation
on a surface can be easily found and the equation governing
the dynamics reduces to a one-dimensional nonlinear integro-
differential equation for the longitudinal deformation in a
monolayer F = ψ∂U/∂x [16]:

FT + H FTT + [H (F FX )] = 0, (2)

where X = ε(x − CRt)G̃, ψ, G̃ are complicated functions of
the linear and nonlinear elastic moduli of the monolayer and
the half-space and the masses of the corresponding atoms. The
Hilbert integral operator H f (x) = 1

π

∫ +∞
−∞

dx′
x′−x f (x ′) arises

because of the two dimensionality of the initial problem (the
presence of a two-dimensional substrate).

3. Asymptotic procedure

We shall now examine the question of the possible existence of
surface dynamical envelope Rayleigh solitons. A dispersion
law for linear Rayleigh waves F = F0 cos(κX − �T ),
modified because of the presence of the surface layer, follows
from equation (2) in the linear limit:

� = −sgn(κ)κ2. (3)

Equation (2) apparently cannot be integrated exactly,
and the solutions for envelope solitons can be found only
approximately, using one or another method of perturbation
theory. Assuming, once again, the deviations of the soliton
velocity from the Rayleigh velocity to be small, it is necessary
to assume at the same time that the deviations of the frequency
from the frequency of a nonlocalized Rayleigh wave are small
(or the amplitude is small). Ordinarily, the low-amplitude
solutions for envelope solitons in nonintegrable systems can
be found quite easily using various asymptotic methods (see,
for example, [17]). According to these methods the function
F(k, T ) is represented as a Fourier series in the periodic
variable (oscillations in the coordinate system moving with the
velocity of the envelope of the soliton) with spatially localized
coefficients of the Fourier series expansion

F(k, T ) = f0(ς)+ f1(ς) cosϑ + f2(ς) cos 2ϑ + · · · (4)
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where ϑ = k X − �T is the phase of the ‘carrying’ wave
and ς = X − vT is the phase of the envelope, whose
velocity is close to the group velocity of the carrying wave
in the linear approximation V = ∂�/∂k = −2k. To
avoid misunderstandings we recall that v is the velocity of
the envelope in a coordinate system moving with the Rayleigh
velocity. The spatial size of the envelope L ∼ 1/μ, where the
parameter μ � 1 characterizes the deviation of the frequency
� of the nonlinear wave from the frequency of the linear
wave with the same value of the wavenumber. The functions
fn(ς) and the parameter v must be expanded in a power
series in μ. In this section it is convenient to choose as this
parameter the quantity μ2 = � − �(k) (below k > 0). The
unusual nature of the asymptotic procedure for an integro-
differential equation with a Hilbert transformation consists
of the following. The operations of raising to a power and
differentiating the terms in the expansion (4) keep these terms
within the framework of a trigonometric Fourier series while
the effect of the Hilbert operator is more complicated. The
rapidly oscillating phase dependence of the last term no longer
reduces to a trigonometric function of the phase ϑ . But the
situation simplifies substantially for weak localization of the
envelope of the soliton, when its size L is much greater than the
length of the carrying wave. In this case it is easy to show that
if the Fourier transform of the function �(μς) asymptotically
decreases exponentially (the function�(p) is smooth at zero),
then

H (�(μς) cos nϑ) = −sgn(k�(μς)) sin nϑ

+ O(exp(−σκ/μ)). (5)

Thus, it is evident that the solution cannot be represented
as series of functions of the type cos nϑ/ coshm ες , as in
the case of one-dimensional envelope solitons. Terms with
power-law asymptotic behavior of the envelope and an altered
phase of the carrying wave appear. However, most terms
with power-law asymptotic behavior have an exponentially
small amplitude and should not be taken into account in the
power series expansions in the small parameter. The terms f0,
which do not depend on the phase of the carrying wave, are
exceptions. Such terms characteristically appear for nonlinear
evolutionary equations with a quadratic nonlinearity. In a
two-dimensional problem the nonzero static deformation in
a monolayer would lead to a nonzero deformation at the
surface of the crystal and therefore a divergence of the volume
energy. However, in our case it follows from equation (2)
that f0 = 1

4v
∂
∂X H f 2

1 . As shown below, in the low-amplitude
limit f1 ∼ μ and ∂/∂X ∼ μ. Consequently, in the first
place f0 ∼ μ3; in the second place, f0 exhibits power-law
asymptotic behavior; in the third place, f0 has an unusual
(for solitons) ‘Mexican hat’ profile with a maximum and two
minima; and, finally,

∫
f0 dx = 0. The last two properties are

identical to the properties for single-parameter solitons with a
stationary profile in the present problem and are characteristic
for nonlinear localized waves in two-dimensional systems: it
turns out that only solitons in which the total deformation is
zero are possible.

4. Low-amplitude envelope solitons

Substituting the expansion (4) into equation (2), taking account
of the anomalous smallness of the term f0, and equating to
zero the coefficients of the terms ∼μ3: μ3 cosϑ , μ3 sinϑ ,
μ3 cos 2ϑ and μ3 sin 2ϑ , we obtain the following closed
system of equations for the functions f1 and f2:

(�+ k2) f1 − ∂2

∂X2
f1 − k2 f1 f2 = 0. (6)

(v + 2k) = 0. (7)

(�+ 2k2) f2 − k2 f 2
1 = 0. (8)

(v + 4k) f2 − 2 f 2
1 = 0. (9)

It follows from expression (7) that in the leading-order
approximation the velocity of the soliton is close to the group
velocity of Rayleigh waves v ≈ V = −2k, which agrees
with the relation presented above. The equations (8) and (9)
are identical and give a relation between the amplitudes of
the harmonics f1 and f2: f2 ≈ f 2

1 . Using this relation
in equation (6) we obtain for the amplitude of the principal
harmonic the standard nonlinear Schrödinger equation:

(�+ k2) f1 − ∂2

∂X2
f1 − k2 f 3

1 = 0. (10)

The soliton solution of this equation is well known:

f1 =
√

2
√
�+ k2

k cosh
√
�+ k2(X − vT )

. (11)

The function f1 is plotted in figure 1(a). The small
parameter in this solution is the parameter introduced above
μ = √

�+ k2 and, indeed, as supposed above, ∂/∂X ∼
μ. In conclusion we shall examine the term f0(X − vT ) in
the solution (4), describing the part of the deformation that
propagates in the form of a wave with a stationary profile
without oscillations. As shown above, f0 = 1

4v
∂
∂X H f 2

1 , where
the function f1(X − vT ) is determined by the expression (11).
The exact expression for the Hilbert transform of the function
sec h2χ is unknown, but the asymptotic behavior can be found
quite simply. It can be shown that for χ � 1 the asymptotic
expansion has the form: H sec h2χ ≈ −3.2χ + 4.2χ3 + · · ·.
For χ � 1 it has the form: H sec h2χ ≈ −0.64/χ+0.53/χ3+
· · ·. Thus the following approximate formula can be use in the
entire range of the argument: H sec h2χ ≈ −0.64χ/(0.2 +
χ2). Consequently, the expression for f0 becomes

f0 ≈ 1.6μ3

vk2

5μ2(X − vT )2 − 1

(5μ2(X − vT )2 + 1)2
. (12)

This function is depicted in figure 1(b). As one can see,
this deformation does indeed possess a power-law asymptotic
behavior at large distances and a complicated form with a
minimum at the center and two symmetric maxima. The total
deformation on the entire surface is zero. Such form and a zero
deformation are also characteristic for Rayleigh solitons with a
stationary profile [16].
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Figure 1. The amplitude of the principal harmonic (a) and the non-oscillating term (b) in the envelope soliton (4), μ = 0.01, k = 0.1.

5. Conclusions

In this paper, we have considered Rayleigh envelope solitons
near the surface of an elastic half-space with a thin nonlinear
coating. It was shown that Rayleigh envelope solitons may
exist in such system. We solved the theoretical dilemma noted
in the beginning of the paper. A new version of the asymptotic
procedure for finding envelope solitons was proposed. The
procedure seems nontrivial because the Hilbert transform
operator enters in the base equation. An approximate analytical
solution for an envelope soliton was found in the low-
amplitude limit. It possesses the conventional soliton form but
is accompanied by an unusual wave with a stationary profile,
power-law asymptotic behavior, and zero total deformation.
The results obtained are presented in a simple form which is
convenient for comparison with experimental data. Our results
agree qualitatively with experimental data. They can also be
used to predict the possible observation of envelope solitons in
new experiments.
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